
JOURNAL OF APPROXIMATION THEORY 75, 237-247 (1993)

Lacunary Quadrature Formulae and
Interpolation Singularity*

D. K. DIMITROV

Imtitute of Mathematics. Bulgarian Academy of Sciences.
1113 Sofia. Bulgaria

Communicated by Paul Nevai

Received December 27, 1990; accepted in revised form August 6, 1992

BirkhofT quadrature formulae (q.f.). which have algebraic degree of precision
(ADP) greater than the number of values used, are studied. In particular. we
construct a class of quadrature rules of ADP = 2n + 2r + I which are based on the
information {full -I). fUI( I). j = O..... r - I ;fIx,), /,2m,(.\:,). i = I ...., n), where m
is a positive integer and r = m, or r = m - I. It is shown that the corresponding
BirkhofT interpolation problems of the same type are not regular at the quadrature
nodes. This means that the constructed quadrature formulae are not of inter­
polatory type. Finally. for each m. we prove the existence of a quadrature formula
based on the information {ftx,), f(2m l(x,), i = I, .... 2m). which has algebraic degree
of precision 4m + I. 'j" 1993 Academic Press. Inc.

1. INTRODUCTION

Let E= (ei);'~ I. :I/~o be a given incidence matrix, (i.e., E contains only 0
and 1 entries). Denote by 1EI the number of I's in E. Matrix E defines a
class .Q of q.f. of the type

('/}= I
f

l

f(x) dx::::: I aJU)(x;),
I

(1)

with real coefficients {au} and nodes X E E, where .::. IS the simplex
{X=(x), ... , x n ): -I ~XI < ... <XII~ I}. The purpose of this paper is to
construct q.f. (I) which have ADP greater than IEI- 1. Our study is based
on certain basic facts from Birkhoff interpolation (see [5]). Let us recall
some of them. The pair (E, X), X E E, defines the so-called BirkholT
interpolation problem

for eu= 1
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(1t N denotes the set of polynomials of degree ~ N). The pair (E, X), X E 2,
is said to be regular if the corresponding interpolation problem has
a unique solution for each sufficiently smooth f Otherwise (E, X) is
called singular. The following is an immediate observation (see [5,
Theorem I0.2( ii) ] ).

THEOREM A. Let (E, X) be a regular pair. Then a quadrature formula
QE'o is exact for every polynomial of degree lEI - I if and only if this
coincides with the corresponding interpolatory quadrature formula.

We call the matrix E poised if (E, X) is regular for each X. It is well
known that if (E, X) is almost poised, then the set of points X in 2 where
(E, X) is singular is a nowhere-dense set of measure 0 (see [5, p. 5]). We
call the quadrature rules of the form

r f(x) dx ~ f (AJ(X;) + bJ1m'(xJ)
--I ;~ 1

(0, m) quadrature formulae with n nodes. Tunin [12, Problem XXXIII]
asked whether there exists a (0, 2) q.f. with n nodes, which is exact for all
/E1t2n' The problem was solved by the author in [3]. We extend here the
question of Turilll for q.f. of more general BirkhofT type. There are only a
few papers in the literature [1,3,7,13-15] dealing with BirkhofT quad­
rature formulae of high algebraic degree of precision. Explicit formulae are
constructed mostly for cases in which the nodes are located at the zeros
X~," of the classical ultraspherical polynomials p~>1 := p~>,'I, orthogonal on
[-1,1] with respect to w,(x)=(l-x2

)" IXE(-I,oo). Varma [13]
solved problems XXXVI-XXXIX of [12], providing a q.f. of the form

I r - 1f f(x) w(x) dx;:::,:2: (aj / u ,( -I) + bJU)( I))
-I ./=0

n

+ L ().J(x;) + bJ(m,(x;))
i= 1

(2)

with II' = I, m = 2, r = I, n even, set of nodes X~I', and ADP = 2n + 3. Later
on, Varma [14] found a very nice simple way to obtain this q.f. for
arbitrary n EN. Nevai and Varma [7] gave a q.f. (2) with IV = w" m = 2,
r = 1, set of nodes X~'I, ADP = 2n + 1, and Varma and Saxena [15] did the
same for II' = 1, m = 3, m = 4, r = 2, nodes X~l), and ADP = 2n + 1.
Akhlaghi, Chak, and Sharma [1] found a (0, 3) q.f. with nodes
X~I~ 2 U { -1, l}, n ~ 3, and ADP = 2n - 1.

According to Theorem A, ADP(Q) ~ lEI - I for interpolatory q.f. On
the other other hand, only the formulae given in [13, 14, 3] satisfy
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ADP(Q) ~ lEI. We construct a class of quadrature rules of BirkhofT type
(2) which have ADP greater than lEI. The main result is the following.

THEOREM 1. Let m, n E Nand {x;} 7 be the zeros of p~m I. Then there
exist quadrature formulae

1 m-If f(x) dx~ I dj(f(j)( -I) + (-I)i fUI( I))
-1 j~O

n

+ I (yJ(x j ) + c5J(2m)(x;)),
;= 1

with ADP = 2n + 2m + 1 and
1 m-2f f(x) dx~ I dj(f(j)( - t) + (-1)1 f<i1(l))
--I j~O

n

+ L (yJ(x;) + c5J(2m)(x;)),
;= 1

(3)

(4)

with ADP = 2n + 2m - 1, respectively.

Note that (4) reduces to a q.f. of type (0, 2) in the case m = 1.
The interpolation pairs (E, X) are singular at the nodes X of the

constructed formulae.

THEOREM 2. Let E be the (n + 2) x (2n + 2m) incidence matrix,
associated ','..ith the qf (3), and let X = (-1, XI' ... , x n , I) he the set ofnodes
of (3). Then the interpolation pair (E, X) is singular.

We prove also

THEOREM 3. Let mEN and {x;} im be the zeros of P~'::,!. Then the
interpolatory quadrature formula

I 2mf f(x)dx~ I p.J(x;) + IlJ(2m)(x;)) =: QO.2m(f) (5)
-I ;~ 1

is exact for every polynomial of degree 4m + I.

2. PRELIMINARIES

As usual P~~) will be normalized by

(6)
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We need the relations (see [to, (4.3.1), (4.21.7)])

~ pl.I(X) = n + 2tX + 1 p(~+ I }(x)
dx " . 2 ,,-I' .

It follows immediately from (8) and (6) that

(7 )

(8)

, (n + 2tX + v)! (n + tX)
(n + 2tX) ! n - v '

for v> n. (9)

LEMMA 1. For arbitrary n, L, kEN Ivith k < L we have

where (c), :=c(c+ 1)· .. (c+v-l)for v>O and (c)o = 1.

Proof The sum on the left-hand side of (10) is equal to

(n+2L)! ±(-k).,(n+2L+l),(-n).,

L! (L-k)! v~o v! (L-k+ I).,(L+ 1).,

= (n+2L)! . F (-k, -n, n+2L+ 1; )
L!(L-k)! 3 2 L+l, L-k+l; 1.

(10)

An application of Saalschutz' formula [4, Chap. 2.1, formula (30)] gives
the identity (to). I

3. PROOFS

Let us consider the so-called "Generalized Lobatto quadrature
formulae," i.e., formulae of the form

I L- I "f f(x)w.(x)dx~ L (a;fU)(-I)+b;f(J)(l)) + L ).J(xJ
-I j~O i~1

:=Qdf;tX,L), (11)
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where aj:=aj(rx,L,n), bj:=bj(rx,L,n), Aj:=Aj(rx,L,n), and LENu{O}
(when L = 0 the first sum disappears). There exists a unique formula of
form (11) with ADP = 2n + 2L - 1, because (11) is a Gaussian quadrature
rule with preassigned nodes (such nodes here are - I and I), whose
existence and unicity have been proved by Stancu [9]. For L = 0, (11)
reduces to Gaussian q.f. with respect to W,. The nodes {x i }7 are located at
X~'HI and aj = (-1 )j bj . An application of (11) to f(x) = g(x) W L(.X-) with
g E 7t 2n _ I yields

where A~~I are the Cotes numbers of the Gaussian quadrature formula with
the weight w'" (see [10, p.352, (15.3.1 )]). Maskell and Sack [6] proposed
a method for the evaluation of the coefficients relative to the endpoints
even for a more general case, treating integrals with Jacobi weights.
However, this generalization complicates the calculations and does not
yield explicit formulae, except for the coefficients h L _ I (rx, L, n) and
hL _ 2 (rx, L, n). In our particular case (rx = 0) we find closed form
expressions for the coefficients.

LEMMA 2. r[ a. = 0 then the coefficients b i of Q I are given hy the
recurrence relation

IL.n.L-1
hL _ 1 = DIL-I)

L.n.L-1

with

(12)

j = L - 2, ... , O.

Proof Note that (11) holds for polynomials

j<L (13)

k,j<L, (14)

j = 0, I, ... , L - I.

If we set ILnj := J~ I gj(x) dx and D~n;kl := gy+k/(I) then hL 1(0, L, n),
bL _ 2 (0, L, n), ..., bo(0, L, n) could be obtained successively by recurrence
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relation (12). Let us note that (13) is an immediate consequence of (3.7) in
[6]. Thus we need only prove (14). By using the Leibniz rule twice, (7)
and (9), we obtain

D~n~k)= (- I)J (j:~)! [(1 + .xy p~L)(X)](k) (1)

= (-1)J (j + k)! ±(k) L! 2L - k +l'

k! V~O v (L-k+v)!

( d)"x - P(L)(I)
dx n

= (_ I )J 2L - k (j + k) 1L! (n + L) !
n! k ! (n + 2L) !

k (k) (n+2L+v)!xI k (n-v+l).,
V~O v (L- +v)!(L+v)!

which together with (10) gives (14). I
It is easily seen from (12), (13), and (14) that

b ( L 12L n! L!
L 1= -1)

(n+2L)!

for L?:- 1,

n'L' L
b L 2=(-I)L 22 L I ., --{2n2+2(1+2L)n+(I+L)2}

(n+2L)! L+ 1

for L?:- 2

L-3 L-3 n! L! 1
h L_ 3 =(-I) 2 (n+2L)!(L+l)2(L+2)

x {(n+ l)(n+2)(L+ 1)2 (L+2)- (L-2)(L-l)(L+ 1)

x (n + L -1)4 + 2(L - 2) L(L + 2)(n + L)

x (n + L + 1){2n2+ 2(1 + 2L) n + (1 + L f} }

for L?:- 3.

LEMMA 3. Let m, n EN, LEN u {O}. The quadrature formula
I rn - If f(x) dx;::;; I cJ(fj)( -1) + (_1)UI f'j)(1»
- I j=O

(_I)m Q (f(2m). L) (15)
+ (2m)! I,m,

:= Q2(f; m, L),
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C= c(m) := (2/+ I(U + I)!). (. m )/f.2m
)

} } V+I V+I
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is exact for every polynomial of degree 2n + 2L + 2m - I.

Proof The following identity is known as "Tchakaloff-Obrechkoff
quadrature formula" [11,8].

1 m- I

f f(x)dx= L cj(fUI(-I)+(-I)jjli)(I)j
-I j~O

( l)m I
+----f (1-x 2)mf12ml(x)dx. (16)

(2m)! I

Applying Q1 (f; m, L) to the integral on the right-hand side of (16) we
obtain (15) and see that Q2 (f; m, L) is exact for every f E'Tr 2(n + L+ ml I· I

The following lemma is a consequence of an application of (11) and (15).

LEMMA 4. For every ~ E IR, m, n EN, LEN u {o} the quadrature formula

Q(f; ~; m, L) := ~ . Q2 (f; m, L) + (1 - 0 Q df; 0, m + L)

has the form

m+L-l
Q(f;~;m,L)= L dj(ful(-I)+(-IV fU)(I))

2m+ L--· J

+ L d j (fU)(-I)+(-IVfu'(I))
i= 2m

n

+ L (}IJ(XJ + bJI2m 1(XJ).
i= J

The nodes {x;}7 are located at the zeros of p~m+Ll. Moreover, it is exact for
every polynomial of degree 2(n + m + L) - 1.

In the proofs of Theorems 1 and 2 we shall mean by {Xi} 7the zeros of p~m).

Proof of Theorem 1. Let us apply Lemma 4 for L = O. For every
m, n EN, Q(f; ~; m, 0) takes the form

m-- I

Q(f;~;m,L)= L dj(jlil(-I)+(-IVfU)(I))
I~O

n

+ L (}'J(x,) + bJ(2m l(x,)),
i= 1
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and it is precise for every f E 7[2" + 2m .. I' Moreover

d} = ¢ci(m) + (1- 0 hj(O, m, n),

)'1 = (1- 0 Ai(O, m, n),

(-1 )m
b;=¢ (2m)! A1(m,0,n),

j=O, ..., m-l

i= 1, ..., n,

i= 1, ..., n.

It remains to prove that there exists ¢ E IR such that

(i) Q(f; ¢; m, 0) is exact for every fE 7[2,,+ 2m+ I'

(ii) dm _ I = 0.

In order to establish (i) let us consider the BirkhofT interpolation problem
based on the information

and

j'iJl(± 1)

j'i2m+ Il(XJ

for j = 0, ... , m - 1,

for i= 1, ..., n.
( 17)

It follows from the theorem of Atkinson and Sharma [2] that this problem
is regular. Therefore there exists a unique polynomial Q of degree 2n + 2m
with leading coefficient one which satisfies

QUI( ± 1) = 0, j = 0, ... , m - I,

i= I, ... , n.

Q(x) does not vanish for x E ( - 1, I). Indeed, suppose that there exists
y E ( - I, I) for which Q(y) = 0. This implies that the BirkhofT interpolation
problems determined by the information f( y) and (17) is singular, which
contradicts the theorem of Atkinson and Sharma. It is not difficult to see
that signQ(x)=(-I)m for xE(-I, I). Therefore Q2(Q;m,0)=0 and
Q I (Q; 0, m) i= 0, because the coefficients Ai of Q I are all positive. Thus if

¢ = 1- (f I Q(x) dx/Qd Q ; 0, m))

then Q(f; ¢; m, 0) is precise for Q. It remains to note that Q is exact for
odd polynomials because of symmetry.

It is easily seen that (ii) is satisfied if one takes ¢=(I_("+,,2m))-I. I
Proof of Theorem 2. It suffices to find a polynomial h of degree less

than 2n + 2m for which

hUl
( ± 1) = ° for j=O, ... , m-l,

h(xJ = ° for i= 1, ..., n,

and h(2m)(x i ) = ° for i= I, ..., n.

(18 )
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hmn(x):= (l_x2)m p~ml(x) is such a polynomial. Indeed, obviously it
satisfies (18). On the other hand, in view of (7) and (8) we have

(
d)2'"dx [(1 - x 2)'" P~"'I(X)]

( 1)n ( d )n + 2m
=--- _ [(1-X2 )",+n]

rn! dx

'" '" (n+m)! (d)'"=(-1) 2 , -d Pn+",(x)
n. X

(n+2m)'
=(_1)'" ·P~"')(x). I (19)

n!

Proof of Theorem 3. The incidence matrix E of the (0, 2m) interpolation
problem with 2m nodes is poised since E is a decomposable matrix (see [5,
Theorem 1.4; 2]). It follows from Theorem A that the interpolatory q.f. is
exact for every polynomial of degree 4m - 1. Obviously polynomial
h",.2"'(X):= (l-x2

)'" P~;/(x) belongs to 1r4", and has a nonzero leading
coefficient. Applying identity (19) for n = 2m we obtain Qo. 2", (h",.2n.) = O.
On the other hand, the orthogonality of p~r;:/ (x) implies
JI I hm.2",(x)dx=0. Thus QO.2m is exact for hm.2",. It is exact also for the
odd polynomials. I

4. ApPLICAnONS AND REMARKS

Let us state formulae (3) and (4) for m = 1 and m = 2. For m = 1 formula
(3) reduces to the quadrature formula obtained by Varma in [13,14], and
(4) to the formula constructed by the author in [3]. For m = 2, (3) takes
the form

II 2(32n3 + 224n 2 + 479n + 345)
_I f(x) dx ~ 3(n + 3)(n + 4)(2n + 5)(2n2+ 5n + 5) (f( -I) + f(1»

+ n(2n + 5 )(2~2 + 5n + 5) (f'( -1) - /'( 1»

(n + l)(n + 2)+----------:0----
n(n + 3)(n +4)(2n + 5)(2n 2 + 5n + 5)

n 2(2n + 1)
X j~1 (l-x})3 [P~2)(x;)f

x {25(n + l)(n + 2)(2n + 1) 2n + 3) f(x;)

+8(I-x;)2 f(lV)(x
i
)}, (20)
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where {Xi }'; are the zeros of P~2) and (20) has ADP = 2n + 5. This is very
similar to a q.f. of Varma and Saxena [15, Theorem 2]. Let us note,
however, that (20) has a higher ADP because of the proper choice of the
nodes. For m = 2, (4) takes the form

f' 16
I f(x) dx ~ 3(n2 + 5n + 10) (f( -I) + f(l))

25(n+l)(n+2) " I

+ n(n+5)(n2+5n+ lO)i~1 (l-xfj3 [p:,2)(xj)r

{
(I - X

2
)2 }

x (n+l)(n+2)f(x;)+(n+3)(~+4)PIV)(xj) , (21)

where {Xi}'; are the zeros of p:,2 I and (21) has AD P = 2n + 3. This can be
considered as a (0, 4) q.f. with set of nodes X:,2) u { 1, I}, i.e., the zeros of
(1 - x 2

) P;; + 2 (x). Moreover it is exact for polynomials of degree 2n + 3.
Note that it is not known whether the corresponding interpolation problem
is regular but if it is, then Theorem A shows that the interpolatory q.f.
coincides with (21). For m = 3, (4) takes the form

r/CX)dX~((n:6)-I) I n(n
1
;7) (f(-I)+f(I))+((n:6)-I) I

13n4+ 182n
1
+873n

2
+ 1852n-1160 f' 1"(1))

x 2400 ( (- 1) -

+{I-(I-C:
6
)) 'L~/~;:)(I-xfj 3f(x;)

+ {6! .(I_(n: 6))}.I '~I Aj~) fI6 1(Xj),

where {Xi}'; are the zeros of p~3) and this formula has ADP=2n+5.
Applying the result in Lemma 4 for m = L = 1, n EN, and

~= -8(2n2+ IOn + 9)/n(n + 5)(3n 2+ 15n+ 14) we obtain the formula

r f(x) dx ~ 24(n(n + 5)(3n2+ 15n + 14)) I (f'( -1) -/,(1))
_. I

+ 64(2n 2+ IOn + 9)(n(n + 5)(3n2+ 15n + 14)· (n + 1)4)-1

X (f"( -1) + /,,(1)) + 3(n + 1)4(n(n + 5)(3n2+ 15n + 14)) I

n

X L A.~;)(l-X;)-2 f(xj)
i~ I

"
x L ).~;)(l-X;)-I /,,(x,),

i~ I

(22)
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where {x;}7 are the zeros of p~2) and (22) is exact for every polynomial of
degree 2n + 3. Note again that Theorem A implies that if the Birkhoff inter­
polation problem described by the information involved in this formula is
regular, then (22) coincides with the corresponding interpolatory q.f.
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